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We investigated flows of visitors migrating between different portal subpages. Two various portals were
studied as weighted networks where nodes are portal subpages and edge weights are numbers of user transi-
tions. Such networks differ from networks of portal subpages connected by hyperlinks prepared by portal
designers. Distributions of link weights, node strengths, and times spent by visitors at one subpage follow
power laws over several decades for data collected during two different days and for weekly data. The
distribution of numbers P�z� of unique subpages visited during one session is exponential and there is a
square-root dependence between the total number of transitions n during a single visit and the average z. A
model of portal surfing is developed where the browsing process corresponds to a self-attracting walk on the
weighted network with a short memory. Results of numerical simulation are in agreement with weekly and
daily portal data, and our analytical approach fits empirical data in the center part of scaling regime.
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I. INTRODUCTION

For physicists, the World Wide Web �WWW� is an in-
triguing complex object with hidden rules of dynamics that
can be partially understood by observations of its specific
statistics �1–15�. From the point of view of topology the
WWW consists of the strong component, in and out compo-
nents, and tendrils as well as disconnected clusters �1–4�.
The problem of effective extracting of authoritative docu-
ments in WWW is crucial for web search engines and was
considered already in 1999 by Kleinberg �16� from the point
of view of graph theory. Several models of the WWW
growth were developed based on concepts of complex evolv-
ing networks �1,2,5,6�. The examples are the preferential at-
tachment process that leads to a scale-free distribution for
degrees �5,7� observed in WWW documents or the model of
redirected outgoing links �6� that well describes the super-
critical distribution of clusters connected with the giant com-
ponent. The WWW is, however, also a room of various hu-
man actions that can be easily investigated using the plethora
of available data �15,17–20�. It was shown �15� that the ori-
gin of heavy tails of Internet traffic can be a natural feature
of the optimal web design where an extended Shanon infor-
mation theory is properly applied for portal architecture and
file volume distributions. On the other hand Barabási �8� and
Vázquez et al. �9� proposed that the bursty nature of various
human activities observed in cyberspace �electronic mails
and web browsing� is a consequence of decision-based queu-
ing processes. Dezsö et al. �10� used this approach to explain
the origin of distribution of time intervals between two con-
secutive visits of users at the Hungarian news portal. The
extension of this model by a multitasks concept �11� gave a
proper value for a characteristic exponent observed in portal
data.

Another issue is the navigability of the whole web or its
parts. Navigability is an attribute of web usability and it fa-
cilitates the way of finding specific information. It was re-
cently discovered that optimal paths between two nodes in

many complex networks can be found without the knowl-
edge of a global network topology �21,22� due to the exis-
tence of hidden metric spaces. A lack of full information
about the system is a common difficulty that is also present
during the portal surfing �12,13�. Huberman et al. �12� de-
scribed the browsing as a random selection of subpages that
possess various attributes �values� for each user. Every next
subpage attribute is stochastically related to the previous one.
The resulting distribution of the number of clicks is the in-
verse Gauss function, which fits well to data collected from
several American portals. The observation �12� was per-
formed in 1997 when the portals were at the beginning of
their development and users did not spend much time brows-
ing them. In fact, the mean values of clicks per user observed
in �12� were about 3. Today’s portals are much larger and
they are able to attract the visitor attention for a much longer
time. Our data collected in 2007 and 2009 give a mean num-
ber of clicks of around 10 for studied portals.

The goal of this paper is to identify common strategies of
portal browsing. The strategies are described by the way visi-
tors navigate between subpages, how much time they spend
on each of them, if and how many times they come back to
the previously visited subpages, etc. Knowledge about these
habits can also be a hint for portal designers to develop a
marketing strategy that will fix the optimal number and dis-
tribution of advertisements. The usability of portal can be
also dependent on the splitting of downloaded documents
into several files �15�. In our study however we do not con-
sider volumes of files downloaded by portal visitors since
these volumes do not vary significantly at considered portals.
We are also only loosely interested in the portal architecture
defined by hyperlinks between various subpages. Of course
visitors browsing habits are dependent on this architecture
but as we shall show there is a significant fraction of visitors
who jump between sites that are not directly hyperlinked.

The paper is organized as follows. In Sec. II, we present
detailed details of our data set, and in Sec. III we discuss a
portal structure with hyperlinks between distinct subpages.
In Sec. IV the portal is treated as a set of pages that are
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linked by visitor transitions and we analyze properties of the
corresponding weighted network. Section V is focused on
observed users’ browsing strategies. A browsing model is
introduced in Sec. VI as a special self-attracting walk, and
complementary simulation results are discussed. An approxi-
mate analytical solution for our browsing model is presented
in Sec. VII.

II. DATA SET

The analysis was based on cookie statistics provided by
Gemius company for two Polish portals �names of the portals
cannot be published because of data protection�. A cookie is
a small text file that every web browser automatically re-
ceives from a web server while visiting a webpage. It allows
users to be differentiated and to maintain data related to them
during navigation. The shortcoming of this method is that
some users can delete their cookies and get a new one the
next time they enter the Internet. Therefore, the number of
cookie users does not correspond to the number of real In-
ternet users. The difference is larger the longer the time of
data collection, being negligible for 1 day, but immensely
significant for 1 month. For both portals the data were col-
lected in two time periods: on 27 July 2007 and two years
later between 15 and 21 July 2009. In the last case the data
were gathered for each day separately, as well as aggregated
for the whole week.

The data collected for one website included user ID, sub-
page ID, time of user’s arrival at a subpage �and, more pre-
cisely, the time she or he clicked on this page�. It should be
emphasized that the whole collection of times and subpages
ID for a given user, which we will refer to as a “visit chain”
in due course, cannot be identified with the time physically
spent by the user on the subpages. This is a natural conse-
quence of the fact that we detect users’ activity only by their
transition to new subpages and we do not have any informa-
tion about their real behavior between two such events. In
particular, we are unable to verify whether a user spent the
time between two transitions reading the subpage content or
whether he left it very quickly, started other activity �e.g., a
phone call�, and then came back to browse the Internet again.

III. PORTAL STRUCTURE

The structure of most webpages—and news portals in
particular—is quite similar. The top of the structure and a
gateway to the exploration of the whole portal is a main
page. It is connected by hyperlinks with the most important
subpages. These are usually topic services, related to sport,
politics, culture, business, and so on. Every service is then
divided into smaller subservices with more specific range of
interest. For example, “sport” service can be divided into
subservices dedicated to different sport disciplines that can-
not be, however, reached from the main page. There are also
bilateral hyperlinks between the subpages of the same level,
directed links from the internal levels subpages to the main
page and to some �but not all� subpages of the upper levels.
In effect, the overall structure, although pretty complicated,
can be divided into a few levels of interconnected internal

subpages, with the main page at the top. We shall call the
network of portal subpages connected by hyperlinks a tech-
nical network since this network is independent from the
temporary user’s behavior and it rather provides a user a
possibility for easy jumps between subpages similarly as
buses or trams give a possibility to travel between different
stops in public transport networks �23�. Of course the design
of the portal technical network should reflect needs of portal
visitors similarly as the design of public transport networks
should reflect needs of city inhabitants.

There are 458 subpages for portal A and 1371 for portal B
�data from 2009� that can be monitored if a cookie user per-
forms a click at one of them. However, considering the pages
visited during 1 day, it turns out that only a fraction of this
number is actually clicked �we will say “active”� during that
period. The exact number of active subpages varies slightly
from day to day, being around 89% of all pages for portal A
and 73% for portal B. The information about the subpages
that have not been visited during a given period can provide
some important insight for the webpage designers. A more
precise analysis for portal A shows that about 17% of level 1
pages are not active, although in principle they are as easily
reached from the main page as the actives ones. That obser-
vation would suggest that there are other important factors,
beside the portal structure, that will make users visiting the
certain subpages and omitting the others. The other result,
coming from the comparison of the technical structure of
portal A with a way the users browse on it, is that there is
only a tiny fraction of user transitions from level 2 subpages
to the main page. Although there exist hyperlinks allowing
for such a navigating scenario �as presented in Fig. 1�, they
are hardly ever used in practice. There are also observed
transitions of the users between the subpages that are not
connected from the point of view of the technical structure of
portal A. Such cases would correspond to observations of
pedestrians walking between bus stops that are not directly
connected. One of level 1 subpages has been chosen for such
an analysis. It turns out that there are around 12% of no-
hyperlink transitions from that subpage. 25% of them lead to
some important subpages such as news, sports, and economy.
There are several possible explanations of such phenomena:
people use bookmarks to their favorite subpages, write the
subpage URL by hand or use the “back” button for one-way
connected subpages.

The above examples suggest that the very existence of a
hyperlink between two subpages does not imply a link be-
tween these subpages, understood as a transition of a user

FIG. 1. Scheme of structure of hyperlink for portal.
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between them. Therefore, the network based on user activity
can have different properties than the one based on the tech-
nical structure of the portal as it was also observed in �19�.

IV. NETWORK STRUCTURE AND PORTAL TRAFFIC

We constructed a weighted network of subpages, defining
a link weight as the number of users moving from one sub-
page �vertex� to another. We observed that the number of
transitions from node i to node j, m�i→ j�, is roughly equal
to the number of transitions in other directions m�i→ j�
�m�j→ i�; thus, we simplified the network topology by in-
troducing undirected links with weights as follows:

wij = m�i → j� + m�j → i� . �1�

One can observe a frequent habit to return to the subpage
that was previously visited, so one visitor can pass many
times over the same link. Therefore, the maximum link
weight can be larger than the total number of users visiting
the portal in the considered time period.

The weight distributions P�w� �see Fig. 2� decay as a
power law with the characteristic exponents � presented in
Table I. Defining a node strength in the usual way,

si = �
j

wij , �2�

we found that the strength distribution is described by P�s�
�1 /s� with � close to 1 �see Fig. 3�. Both � and � expo-
nents show stability for different 1 day intervals, as well as
for 1 day and 1 week periods.

Our data set made us possible to measure the time spent
by a user at one subpage if this time is understood as the time
between two consecutive clicks on two different subpages
performed by this user. Corresponding time distributions
were analyzed by Dezsö et al. �10� and by Gonçalves and
Ramasco �11�, who found power-law relations with expo-
nents �=1.2 and 1.25, respectively. The model of separately
executed tasks �8� gives �=1 while the model of �bounded�
tasks groups �11� leads to ��1. In our case, we measured
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FIG. 2. �Color online� The weight distribution.

TABLE I. Comparison of result obtained for different days. nuser is the number of users visiting portal during a considered period, N is
the number of active subpages, � is the exponent of weighted distribution, wmax is the maximum weight, � is the exponent of strength
distribution, smax is the maximum of strength, nmax is the length of the longest visit, zmax is the maximum number of unique subpages visited
by one user, and � is a exponent of distribution of numbers of unique subpages.

nuser N � wmax � smax nmax zmax �

Portal A

27.07.07 1003673 195 1.52�0.01 822433 1.02�0.03 2767113 1729 41 0.41�0.01

15.07.09 2272111 404 1.61�0.01 1102903 1.05�0.03 4072870 15800 76 0.30�0.01

16.07.09 2270730 407 1.60�0.01 1036696 1.05�0.04 3937602 15806 74 0.33�0.01

17.07.09 2149883 403 1.62�0.01 828315 1.01�0.04 3503820 14623 77 0.31�0.01

18.07.09 1666424 400 1.63�0.01 617187 1.07�0.04 1948880 15711 44 0.31�0.01

19.07.09 1940454 405 1.62�0.01 687090 1.03�0.04 2319760 15390 63 0.33�0.01

20.07.09 2412961 413 1.60�0.01 957636 1.06�0.03 4005783 15809 79 0.30�0.01

21.07.09 2331888 404 1.61�0.01 1219132 1.06�0.04 4216687 15682 82 0.29�0.01

Weeks 15–21 8642106 413 1.57�0.01 6160278 0.98�0.03 25146528 108821 138 0.171�0.005

Portal B

27.07.07 3959624 515 1.53�0.01 6857818 1.07�0.03 25861104 7018 109 0.31�0.01

15.07.09 5662539 1014 1.58�0.01 4213204 1.13�0.03 29056617 25081 121 0.29�0.01

16.07.09 5546417 994 1.58�0.01 4123942 1.12�0.03 28154771 25270 113 0.28�0.01

17.07.09 5285334 991 1.59�0.01 3776969 1.12�0.03 27336737 25194 124 0.27�0.01

18.07.09 4026100 982 1.61�0.01 3426243 1.12�0.03 18776225 24407 76 0.28�0.01

19.07.09 4493130 997 1.62�0.01 3680387 1.11�0.03 20863811 24166 105 0.30�0.01

20.07.09 5664522 994 1.60�0.01 4107782 1.11�0.03 27572861 24368 95 0.30�0.01

21.07.09 5693520 994 1.61�0.01 3892358 1.11�0.03 29085101 23785 112 0.28�0.01

Weeks 15–21 17916433 1014 1.57�0.01 27867827 1.02�0.03 187079363 172247 222 0.142�0.005
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�=1.27�0.01 for portal A and �=1.32�0.01 for portal B
�both results are for daily data�, and the scaling was valid for
the range over 2 decades �see Fig. 4�.

To understand properties of weighted user transition net-
work, we followed details of users’ paths. We analyzed the
distribution of numbers of unique subpages z visited by a
user during a single visit �Fig. 5�, and we observed an expo-
nential behavior with a unique characteristic parameter � for
a given portal,

P�z� = A exp�− �z� . �3�

The value of � parameter differs for different time intervals.
The relation between � and the number of active subpages is
straightforward and quite intuitive: the bigger the portal �i.e.,
the larger the number of the active subpages�, the more
unique subpages can be visited during one visit and, hence,
the smaller is the value of � parameter.

Let us consider the relation between two variables: a
number of jumps �transitions� between subpages n and the
average number of distinct �unique� subpages �z	 corre-
sponding to the same fixed n value. One can refer to z as to
the “interest horizon” since it describes the user’s tendency
to stick to a limited subset of certain subpages. The relation
is presented in Fig. 6 and for n�100 it can be described by
the function

�z	 = a
n . �4�

For both portals, we observed the same square-root depen-
dence. Now, having Eq. �4� and the number distribution of

unique subpages, we can find the formula for the distribution
of the number of jumps presented in Fig. 7. Since

P�n�dn = P�z�dz , �5�

we get

P�n� =
aA exp�− �a
n�

2
n
. �6�

As we observed in Fig. 7 this formula fits to the collected
daily data but for the weekly data the exponential behavior
for the distribution of numbers of unique subpages appears
after 20 steps �see Fig. 5�. That is why the Eq. �6� fits only to
the tail of the weekly data jump distribution �see Fig. 7�.

V. VISITORS STRATEGY

The analysis of statistical properties of the visitor behav-
ior reveals an important phenomenon that is frequent returns
to a subpage previously visited. One can ask how a subpage
at the portal affects the frequency of the return to this sub-
page. The most special subpage is the main page, in most
cases being the starting point of browsing. Therefore, this
subpage contains the biggest number of links. We assume
that the main page is not the only subpage revisited during
one visit chain. Let p� be a return probability to a subpage
visited one step earlier �meaning that a user reads the same
subpage at the step numbers n−1 and n+1�. We restricted
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FIG. 5. �Color online� Distribution of numbers of unique sub-
pages z visited by a user during one visit. The parameter � of
exponential fitting is presented in Table I.
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our calculation to the range of 100 steps only, where the
scaling is observed. In Table II, we present the total return
probability p� and its two components that describe the com-
ing back to the main page �pmain� and to a different subpage
�pdif f�. The total return probability is p�= pmain+ pdif f. The
large value of p� can be related to the use of the back button
or opening of a new “window” and jumping between two
open browser windows. For weekly data the value of p� does
not change a lot as compared to 1 day and it is equal to p�

=0.52 for portal A and to p�=0.57 for portal B.

VI. SELF-ATTRACTING WALK AS A BROWSING
SCENARIO

The relation between the average number of distinct sub-
pages �z	 and the number of jumps n can be interpreted as
the relation between the average number of distinct visited
sites and the number of steps �understood as time� in the
problem of random walk. This classical problem of stochas-
tic processes was considered by many authors �see, e.g.,
�24–29��. In one dimension, a random walk is characterized
by the square-root relation between the number of distinct
states and the number of visited states, �z	�
n. From the
famous Polya’s theorem �27�, it is known that the probability
of returning �at any time� to the starting point by a random
walker in a d-dimensional lattice can be less than 1 only for
d�2. In this sense, the dimension d=2 is critical for this
dynamics, �z	�n / ln n �28�. For complex networks with
scale-free degree distribution, there is �z	�n �see �26��.

Various models of biased random walks were analyzed
�see, e.g., �30,31��. A special case is a model of self-
attracting walk �32,33� where a state that was previously
visited is preferred in the next time step but there are differ-
ent scenarios of attracting relations. Here, we adopt such a
model for portal browsing. The model reminds the process
introduced by Fagin et al. �36� where the problem of random

walks with the back button was considered and it was shown
that that such a process is an extension of Markovian chains.
We took the topology of the network with weights between
two nodes defined by Eq. �1�. The dynamics on the network
is very simple: each walker starts at the main page and then,
with a transition probability pij, moves to one of the neigh-
boring subpages. The probability of transition from vertex i
to vertex j is proportional to the weight of this edge,

pij =
wij

�
k

wik
=

wij

si
. �7�

After two initial steps a tendency of returning to a previously
visited page is introduced as follows. At the step n, a walker
returns to a node visited at the n−2 step with probability p�,
and with probability 1− p� he chooses a random neighbor,
according to the transition probability pij. The results of such
a simulation for both portals �Fig. 8� are close to the real data
in the range of the first 30 steps for the 1 day data and the
first 100 steps for the weekly data. One day simulation was
based on the model parameters derived for the data from 15
July 2009 �404 active subpages�. The real data presented in
the figure corresponds to 21 July 2009 �also with 404 active
subpages�. The gray area in Fig. 8 shows the regime (�z	
−�z�n� , �z	+�z�n�), where �z�n� is the standard deviation for
distribution of number of unique visited subpages for a spe-
cific n. The standard deviation is increasing with n, except
from the cases �z�1�=�z�2�=0. In the whole regime the stan-
dard error is significantly larger than a difference between
real data and numerical stimulation. The 	2 test confirmed
the agreement between empirical and numerical data in the
range 2
n
300 of statistical significance �=0.01. This re-
sults however from large values of standard deviations in
empirical data. In Fig. 8 we also present the relation between
zmax and the maximum number of unique subpages visited
during the n-step visit. Over the first decade we observed a
linear dependence until some critical point after which the
maximum number of unique subpages is smaller, 5
n. For
the weekly data the critical point is around 22 for both por-
tals.

The model of human behavior during the webpage brows-
ing was presented by Gonçalves et al. �17�. This model ap-
plies to the behavior of users of quite specific portals, like
university ones, and is based on the IP addresses. The data
collected in �17� reflect the individual popularity of various
subpages for various users. Such an analysis is possible to
perform when the set of the users is relatively limited �for
example, for the people from one university� and their IPs
are known. In the case of the public portals the access to the
IPs is not possible because of data protection. Then the
analysis based on the cookies is more appropriate. There are
some similar approaches in both models, such as assuming
certain probability of returning to the visited pages or the
possibility that a user can randomly select her or his next
webpage. Our model of the self-attracting random walk with
a short memory does not need the full information of history
of special user, like in �17� where the bookmarks ranking are
build; however, we use the global ranking of popularity sub-
page.

TABLE II. Comparison of return probabilities data �27 July
2007� from portals A and B.

Portal A Portal B

Probability p� 0.54 0.57

Probability pmain 0.29 0.27

Probability pdif f 0.25 0.30
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FIG. 7. �Color online� Jump distribution and fit to Eq. �6�.
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VII. ANALYTICAL APPROXIMATION

Let us now consider a random walk at the weighted net-
work. In the infinite time limit, the stationary occupation
probability �i describing the probability that a walker is lo-
cated at node i is given by �34,35�

�i =
si

N�s	
. �8�

Unfortunately, in our case the walker lifetime at the network
is not long enough to assume the stationary distribution of
probability �i because at the beginning of the walk the initial
site is significant.

Despite this nonstationarity, we find an approximated re-
lation between the average number of distinct subpages �z	
and the number of jumps n. Let us define ds�n� as a fraction
of vertices of strength s visited by a random walker at least
once after n time steps. In our weighted networks, the rela-
tion between �z	 and n is analogical to the unweighted net-
works discussed in �29�,

�z	�n� = N�
s

P�s�ds�n� , �9�

where N is the number of vertex subpages of the portal.
Changes in ds�n� can be written as

�ds

�n
= �1 − ds�n����s� . �10�

Here, ��s� is the probability that a walker observed in a ran-
dom time moment is at site of strength s. The above equation
is true when ��s� is stationary, and it is only an approxima-
tion during first steps of the walker’s path. Now we extend
this equation by taking into account user’s tendency to revisit
subpages discussed in the previous section. Since the walker
returns to the page visited two steps earlier with probability
p�, in such cases there is �ds /�n=0. It leads to the equation

�ds
�

�n
= �1 − ds

��n����s��1 − p�� . �11�

Taking into account the initial condition ds
��0�=0, we get the

solution

ds
��n� = 1 − exp�− n��s��1 − p��� �12�

with the characteristic relaxation time

��s� =
1

��s��1 − p��
. �13�

One can see that the relaxation process is slowed down by
the factor 1− p�. From Eqs. �9� and �12�, we have

�z	�n� = N − N�
s

P�s�exp�−
sn�1 − p��

�s	N � . �14�

Since for infinite networks there is a divergence of the first
moment of the empirically observed distribution P�s��1 /s,
we used real data to estimate �s	= �1 /N��i=1

N si.The resulting
solution �14� is presented in Fig. 8 and it fits with the nu-
merical simulations discussed in Sec. VI.

VIII. CONCLUSIONS

We show that user’s interest horizon, measured as the
number of distinct visited subpages, is relatively small in
comparison to the number of all transitions at the portals,
i.e., to the number of all subpages visited by the user. This
means that people return many times to the same subpage or
pass by the same page during a 1 day and 1 week visit
session. There can be various explanations for this phenom-
enon. The large probability of coming back to the main page
can be a result of the technical portal structure �see Sec. III�,
with a main page being a hub of network. However, since the
probability of returning to any other subpage is also signifi-
cant, it can be suggested that it is somehow difficult for the
users to find the information they need. So, if they consider a
visited subpage inadequate to what they were expecting, they
come back one step up the portal structure and try to go to
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FIG. 8. �Color online� The relation between the average number of distinct subpages and the number of jumps. Left: 1 day data for portal
A; right: weekly data for portal B. Black points represent data, blue points are the maximum number of unique subpages during n step visit,
black lines fit to relation between the average number of distinct subpages and the number of jumps are Eq. �12�; red crosses come from the
numerical simulation. The gray area is the regime (�z	−�z�n� , �z	+�z�n�). Results of numerical simulation �1
106 artificial users and n
=300 steps for each� fit to the real data from portal A for number of steps n
30, and for n
100 for portal B. After system thermalization
�more than 30 steps�, we observed agreement between the analytical calculation and simulation results.
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the other subpage. Since the number of distinct pages visited
by portal users grows as a square root of the total number of
clicks, the increase in newly visited pages is smaller and
smaller for long time visits. It can be suggested that even the
users that spend a lot of time at portal browsing are looking
for a limited set of subjects. In this sense, the Internet seems
to be a perfect tool to keep an eye on the changing situation
in the regions of some importance to the users �for example,
stock market indices, political news, and topical portals�. Ob-
servation of week behavior of user argues for this explana-
tion. However, the existence of such a global and easily ac-
cessed “knowledge mine” does not necessarily enlarge
people’s general interest horizon. The other possibility can
result from the fact that portal visitors need to frequently
pass over a few “transit” pages to come from one aim to
another. Such a scenario would correspond well to the ob-
served exponent ��1 �see Fig. 4� describing probability dis-
tributions of times between consecutive clicks. This scheme
would also fit to the model of bounded group tasks proposed
in �11�. Our simple model of a self-attracting walk shows

that real data are in part reproduced by a short memory pro-
cess. The observed scaling relation between an average num-
ber of distinct subpages �z	 and a number of jumps n is
approximately reconstructed using the strength of the node
as a popularity range and the rule of coming back to the
previous page with probability p�. The solution of the rate
equation fits with the simulation results for a number of
clicks larger than n�30. However, it is difficult to directly
compare the developed model with the collected portal data
because the number of users visiting more than 30 subpages
is not large for daily data. For weekly data we observe that
analytical results reflect the empirical data in the regime be-
tween 60 and 100. It suggests that a part of user activity can
be modeled by random walkers with a short memory.
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